
How Close are World Models to the Physical World?

Rishi Upadhyay1 Howard Zhang1 Zhirong Lu1∗

Lakshman Sundaram1∗ Ayush Agrawal1∗ Yilin Wu1∗ Yunhao Ba2 Alex Wong3

Celso M de Melo4 Achuta Kadambi1

1University of California, Los Angeles 2Sony
3Yale University 4DEVCOM Army Research Laboratory

Abstract

Recent advances in world modeling, such as the Cosmos foundation model, high-
light the growing need for physically accurate representations of dynamic environ-
ments. Despite this ambition, existing evaluation benchmarks fall short of capturing
the full complexity of physical interactions, often relying on discrete or binary
proxy tasks like object contact prediction. We introduce WorldBench, a new video-
based benchmark that directly evaluates a model’s ability to predict the evolution
of physical scenes over time. Our dataset comprises four physically rich scenarios
(motion physics, object permanence, support relations, scale/perspective) with 425
total configurations that assess both visual fidelity and physical plausibility. We ad-
ditionally add natural language to a subset of this dataset, allowing us to benchmark
text-generation models as well. Evaluating on SOTA world foundation models,
we find that all configurations lack the physical consistency required to generate
reliable real-world interactions. Furthermore, evaluating SOTA vision-language
models, we find that the best models perform only slightly better than chance,
highlighting a need for better object tracking and temporal consistency. Combined,
this benchmark offers a more nuanced and scalable framework for evaluating the
physical reasoning capabilities of world models, paving the way for more robust
and generalizable simulation-driven learning. Our benchmark and evaluation code
can be found at: https://huggingface.co/datasets/worldbenchmark/WorldBench

1 Introduction

Imagine watching a tower of blocks teeter and fall, or a ball rolling its way down a staircase. As
humans, we effortlessly predict its motion. However, this intuitive grasp of physical dynamics remains
a core challenge for AI. Recent world foundation models, most notably NVIDIA’s Cosmos [2],
promise to learn such skills at scale, with some even suggesting that these models can be used as
synthetic data generators for the real world. Rigorously evaluating these claims requires benchmarks
that are designed and focused on probing physical understanding beyond simple outcomes, but
existing benchmarks for physical reasoning tasks often provide only coarse-grained or binary metrics.
For example, Physion [6] evaluates physical reasoning using the object contact prediction task, which
determines whether two targeted objects in a scene touch." While its visual realism and variety is
useful for early progress, such evaluation frameworks fail to capture nuanced physical phenomena,
such as object dynamics (velocity, acceleration, rotation, etc.), deformation, or occlusion.

In this paper, we introduce a new benchmark designed to evaluate the physical reasoning capabilities
of world foundation models through video prediction. Rather than predicting discrete or binary
outcomes, our benchmark requires models to forecast the evolution of full visual scenes over time. To
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Figure 1: Overview of our generation and evaluation process. For generation (top), we use Kubric,
which uses PyBullet and Blender under the hood. During evaluation (bottom), we first pass the
initial frames of the generated video to the world foundation model which completes the video. The
completed video is passed to SAM2 along with bounding boxes based on ground truth masks. The
segmentations outputted by SAM2 are compared to ground truth segmentations to obtain the final
metrics.

ensure the output dynamics converge toward a single interpretable outcome, we design simplified yet
physically rich and visually realistic scenes across four categories: motion physics, object permanence,
support relations, and scale/perspective. The dataset includes 425 diverse video sequences across all
categories. In addition, in order to further validate the physical reasoning of popular vision-language
models such as Gemini [36, 37] or Qwen [39] with the same set of benchmark videos, we include a
set of scene-specific question-answer metrics.

Our proposed task of "constrained video prediction" allows for the more nuanced and detailed
assessment of physical laws described above (i.e. dynamics, deformation, occlusion, etc). It
also permits qualitative human judgment for dynamic realism (i.e. how realistic was the object
movement?). In addition, the task design sets it apart from its predecessors. It is focused on specific
physics properties such as object permanence or scale/perspective, that consistently show up in the
real world and are needed for real tasks. These are not present in previous benchmarks such as
Physion. We believe our benchmark provides a more rich signal of how close these models are to
truly learning and understanding real-world dynamics. For future work, our benchmark also leads to
a wider array of downstream tasks, such as object tracking, anomaly detection, action planning, etc.

We use our benchmark to extensively test the Cosmos world models, revealing substantial gaps in
physical consistency and generalization when compared to simulated, physically accurate expectations.
Our results highlight the limitations of current architectures and motivate further work on physically
grounded learning.

Below is a summary of our key contributions:

• We introduce a novel fully video-based benchmark, WorldBench, for evaluating physical
reasoning in world foundation models with 425 unique, hand-designed scenarios.

• We additionally introduce a new language-based subset of benchmark for evaluating physical
reasoning in vision-language models.

• We perform an empirical analysis of the performance of state of the art WFMs and VLMs to
identify shortcomings and gaps in physical understanding.

2 Related Work

2.1 World Foundation Models

A significant body of work has emerged around "world models", models that can understand and
predict the real world, in recent years. Initial work in this space focused on vision-language mod-
els [25, 28, 33], but recent work has been on using video generation models [3]. These models
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Q: How many dominoes will be knocked down?

Q: True or False: The chair rotates clockwise upon hiing the ground.

A. None B. One C. Two D. More than Two

A: False

Figure 2: Qualitative Examples of the Language-based subset of WorldBench. VLMs are given
access to a 9 frame video (same as what is inputted to COSMOS) and ask to answer a True/False or
multiple choice question based on the video and future predictions.

typically leverage transformer architectures and either latent diffusion models [7, 8, 16, 21, 22, 11,
27, 34, 40] or auto-regressive models [15, 42, 45, 49, 44, 41, 46, 43, 30] to achieve temporally
consistent video synthesis. However, while these models are able to generate visually realistic and
aesthetically pleasing outputs, there has also been a recent growth of research surrounding physically
accurate generations. The recent Cosmos [2] aims to be a “world foundation model", which can
output temporally and physically accurate videos that can be leveraged for training downstream AI
models that interact with the physical environment. Cosmos can generate these videos using either a
transformer-based autoregressive model or a transformer-based diffusion model, training a large cor-
pus of over 100M video clips, labeled by numerous different vision-language models [38]. Similarly,
other models such as Genie [10], also attempt at creating a “world foundation model" capable of
generating physically accurate interactive environments. It uses a novel video tokenizer and a causal
action model, passing both the video tokens and action latents to an autoregressive dynamics model
for prediction. However, note that Genie is currently closed-source and not available for evaluation
under our proposed benchmark. These "world foundation models" claim to be physically accurate
enough for their outputs to be used as simulated data, but little to no evaluations have been developed
so far to validate this claim.

2.2 Physics Datasets and Benchmarks

There has been a growing interest in the community to evaluate the physical understanding and
reasoning abilities of modern vision models [14, 20, 29, 32, 35]. Datasets like PHYRE [5] focus on
simplistic 2D scenarios constructed from balls and rectangular bars, with dynamics like collision,
gravity, and friction. CLEVRER [48] is a video reasoning benchmark designed with simple structures
for tasks including description, explanation, prediction, and counterfactuals. The MOVi set of
datasets [18], are multi-object video datasets, targeting object-centric models and their ability to
detect and discover object boundaries in videos. More recently, the Physion dataset [6] compiles a
set of visually realistic videos separated between 8 different physics scenarios: dominoes, support,
collide, contain, drop, link, roll, and drape. It leverages the object contact prediction (OCP) task to
evaluate the physical understanding ability of models. While considerable progress has been made in
this space, all prior work are deficient in at least one key area. Datasets like PHYRE and CLEVRER
lack in visual realism and are made up of overly simplistic objects and structures. The MOVi datasets
has visually diverse scenes and objects, but focuses on object discovery rather than physical reasoning
tasks. As described in earlier sections, while Physion does have a wide variety of different tasks and
visually realistic video inputs, the sole use of the OCP task for physical understanding evaluation
limits its ability to be used to evaluate the new wave of world foundation models such as Cosmos [2]
or Genie [10]. Compared to these, our benchmark is the first fully video-based benchmark, where
the inputs and outputs are both video based. This aligns much more closely with the architectures of
today’s models, making it a better fit for physics evaluation.
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2.3 Multi-modal Vision Language Models

Accompanying the wave of popularity of large language models is the vision-language model, a
multi-modal model capable of processing both text and visual input [37, 39, 1, 17, 24, 26, 47, 50].
These models are typically capable of video understanding and reasoning. The recent Gemini
model [36, 37] is an example of a multi-modal model, capable of flexibly taking in any order of
visual, textual, or audio input. The more recent Qwen2.5-VL model [39, 4], from the Qwen series
of vision-language models, uses dynamic resolution processing and absolute time encoding, and
particularly targets a visual agent’s ability to perform visual reasoning, tool usage, and task execution.
To evaluate the dynamics prediction accuracy and physical reasoning abilities of these models, we
extend our proposed benchmark with a language-based visual reasoning framework.

3 Benchmark

In order to test physical understanding in "world foundation models" (WFMs), we introduce a
novel benchmark, WorldBench, designed to evaluate their physics prediction capabilities. The core
methodology is to provide these models with a short input video and tasking them to generate a
continuation. To assess the accuracy of the generated physics, we segment objects in the generated
videos and compare them against ground truth segmentations. All of the data used in the benchmark
is obtained from a physics simulator, ensuring that it is physically accurate and that we can obtain real
ground truth. Our benchmark specifically probes four fundamental physics concepts: Motion Physics
(how objects move and interact), Support Relations (how objects are supported or balanced), Object
Permanence (understanding that objects continue to exist when hidden), and Scale/Perspective (how
size and spatial relationships change with viewpoint). This is not an exhaustive list, but is designed to
cover a range of common real-world scenarios.

For each concept, we construct 3-5 scenarios. Each of these scenarios is hand-designed to capture
some element of the concept it is testing. For each scenario, we have 25 videos, each of which is
generated by randomizing various components such as object type, location and material. In total,
WorldBench is made up of 425 videos spanning the 4 concepts. Each video is 132 frames long and
includes depth, normals, object segmentations, and optical flow. All meshes and objects used in our
simulations were taken from the ShapeNet dataset [12] which includes 51,000 object models across
55 different categories. We sampled across all different categories and models, allowing for diversity
in object shapes, textures, sizes, and properties.

All videos are rendered using Kubric, an open-source physics simulation pipeline [19]. Kubric uses
PyBullet [13] as the physics simulator and Blender [9] as the renderer. This allows us to combine
the physically accurate simulation of PyBullet with the high-quality rendering of Blender. We will
now provide a brief description on each of the concepts and scenarios individually. More details are
included in the supplemental material.

3.1 Motion Physics

Motion Physics is focused on evaluating the kinematics and dynamics in the generated video,
specifically accounting for forces such as gravity and friction. This is a very common real world
scenario, as it is common for these models to have to simulate moving and colliding objects. To test
motion physics, we create 3 scenarios:

• Bouncing Ball A sphere, initially at rest at some known height above the ground, is subject to fall
freely under gravity.

• Two Object Fall Two distinct objects are initially at rest at different heights above the ground and
at a slight horizontal offset. Both objects are released to freely fall under gravity, and then typically
collide with each other and the ground.

• Two Object Parabolic Motion This scenario is a slight variation of the above scenario, where two
distinct objects are placed on opposite sides of the scene. They are then projected towards each
other at some randomized initial angle and projectile angle, not necessarily in the same vertical
plane.
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3.2 Object Permanence

Object permanence, evaluates whether video generative models understand that objects continue to
exist in the scenes even when hidden from the camera. This is a fundamental physics property that
significantly affects our ability to predict the world (e.g. when driving we understand cars remain
even if blocked) and is generally developed in young children between the ages of only 4-7 months
old.

• Block & Obj An object is moving from left to right behind a wall. The movement is linear and
predictable, starting left of the wall with a randomized initial velocity. The object disappears behind
the wall and reemerges on the right side.

• Columns An object moving from left to right behind several thin columns. This is very similar to
the Block & Obj task, except that the object periodically disappears and reappears as it passes each
column.

• Raised Block Bounce A sphere bouncing vertically behind a raised block. A sphere appears above
the block when approaching its highest vertical position, and below the block when close to the
ground, As it bounces, it is periodically occluded by the block and not visible to the camera.

• Wall Bouncing A sphere rolling horizontally behind a block between two walls. As the sphere
rolls from one side to another, it eventually collides with a wall, bounces off, and rolls back the
other direction. The sphere is periodically occluded while behind the block, and reappears in a gap
as it approaches a wall.

• Two Ball Bounce Two spheres bouncing vertically, with one larger sphere in front and one smaller
sphere straight behind it. During this motion, the small sphere is periodically occluded by the large
ball as their vertical positions diverge.

3.3 Support Relations

Support relations scenarios evaluate how objects physically support one another, e.g. one object
preventing another from falling due to gravity or external forces. This includes understanding when
certain configurations of objects are stable vs. unstable: for example, a large object placed on the
middle of a table would be stable while the same object placed closer to the edge would be unstable.
To test support relations, we designed 3 scenarios:

• Dominoes This scenario features an object colliding with a series of standing dominoes on a
surface. Depending on initial velocity, the object knocks over varying number of dominoes, which
may subsequently topple onto one another.

• Ramp Block A sphere rolling down an incline until it encounters a fixed barrier at the end, causing
it to stop. This tests two things, one whether the incline supports the ball as it rolls, and then if the
block at the bottom supports and stops it.

• Table Drop An object is positioned at a table’s edge with a portion extending beyond the surface.
This scenario directly challenges a model’s understanding of the minimum conditions required for
stable support and balance. Mere contact with a support surface is insufficient–the object requires
adequate support distribution relative to its mass distribution.

3.4 Perspective / Scale Relations

The perspective/scale category is designed to evaluate the accuracy of objects’ appearance, such
as size and location, with respect to the camera viewpoint. We implemented two types of scenes
to evaluate whether models can reason about how object size and location change as a function of
distance from the camera.

• Obj/Sphere Moving Towards Camera A single object (e.g. a sphere or miscellaneous irregular
object) is launched from the background and moves towards the camera. As the object approaches,
it should appear to increase in size due to perspective.

• Obj/Sphere Moving Away From Camera An object begins near the foreground and moves away
from the camera into the distance. The object should appear to shrink as it recedes.
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Figure 3: Qualitative examples for the Motion Physics (top) and Scale/Perspective (bottom)
scenarios. For the motion physics example, two objects (a vase and a knot) are thrown at each other,
collide, and then fall to the floor. The auto-regressive model greatly distorts the object shapes, while
the diffusion model hallucinates the vase into a tank and adds a human hand. For the scale example, a
metallic sphere is rolling away from the camera. Both models perform well on this sample.

3.5 Text-Enhanced Subset

In addition to the generated videos, we additionally created a language-based subset of the benchmark
to evaluate todays vision-language models (VLMs) on physics understanding and prediction. This
subset asks models to interpret visual details or predict physical outcomes, allowing us to assess their
ability to do intuitive physical reasoning in diverse situations.

We select a subset of 181 videos and write 1 natural language question per video. Questions can be
either binary True/False questions or multiple choice with up to 4 choices. Example questions and
answers are shown in Fig. 2.

4 Evaluation

We evaluate both the video and language-based components of WorldBench in order to gain an
understanding of how good today’s models are, and where there might be room for improvement. For
the video benchmark, we evaluate the Cosmos models. So far, these are the only models trained to be
"world foundation models" that have been open sourced and therefore can be tested.

4.1 Cosmos

The Cosmos family of models includes multiple models spanning various parameter counts and
architectures [2]. For this paper, we evaluate two models: a 5B-parameter auto-regressive generator,
and a 7B-parameter diffusion based generator. Both of these models receive the same inputs: an input
video which is 9 frames long and a prompt describing the input and continuation. The autoregressive

6



Frame 0 Frame 6 Frame 12 Frame 18 Frame 24

G
ro

un
d 

Tr
ut

h
A

ut
o-

R
eg

re
ss

iv
e

D
iff

us
io

n
G

ro
un

d 
Tr

ut
h

A
ut

o-
R

eg
re

ss
iv

e
D

iff
us

io
n

time

Figure 4: Qualitative examples for the Support Relations (top) and Object Permanence (bottom)
scenarios. For the support relation example, a ball is rolled down an incline with a bar at the bottom.
Both the autoregressive and diffusion models have the ball rolling through the bar violating physics
principles. For the object permanence example, a box is thrown from behind columns. Both models
render the box, but do not have it continue its motion after emerging from behind a column.

Table 1: Foreground mIoU results for Cosmos models on our benchmark. Since the diffusion
models generates 121 frames vs 33 for the autoregressive, we provide both comparisons. Higher is
better for all columns

Model Ball Bounce Two Obj Fall Two Obj Para Block/Obj Columns Raised Block Walls Two Ball

Autoregressive 0.3759 0.2675 0.2268 0.2643 0.7032 0.3798 0.4996 0.1607

Diffusion (33 frames) 0.3719 0.2994 0.2831 0.3476 0.7349 0.4555 0.5578 0.2013

Diffusion (121 frames) 0.1636 0.1444 0.2008 0.2047 0.5575 0.3193 0.4155 0.1403

Obj Tow. Obj Away Sphere Tow. Sphere Away Dominoes Ramp Table Avg.

Autoregressive 0.2984 0.4121 0.6349 0.4799 0.4605 0.5292 0.6439 0.4225

Diffusion (33 frames) 0.3272 0.4840 0.7123 0.5546 0.4892 0.4861 0.4573 0.4508

Diffusion (121 frames) 0.0996 0.2330 0.2453 0.1774 0.1568 0.3802 0.4215 0.2573

model then generates 33 frames, while the diffusion model generates 121 frames. We use two metrics
to evaluate the accuracy of generated videos: Foreground mIoU and Background RMSE. Foreground
mIoU compares ground truth object segmentations with segmentations extracted from generated
videos by SAM2 [31] and gives us information about how accurately the models can predict the
dynamics and evolution of the scene. In order to run SAM2 [31], we extract bounding boxes from the
GT segmentations and use them as prompts to match predicted masks with real masks. Background
RMSE on the other hand, computes the RMSE between the background in the ground truth video and
generated video. It is computed using the ground truth background segmentation mask. This metric
gives us information about whether the model is able to keep the surrounding scene/environment
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Figure 5: mIoU results over time. The foreground mIoU is inversely related with how far in the
future the model is predicting. There is a sharp drop off after frame 9 when the model first begins
predicting and this flattens after approx. 30 frames for the diffusion model and 15 frames for the
auto-regressive model. The shaded region shows 1 standard deviation.

Table 2: Background RMSE results for Cosmos models on our benchmark. RMSE is computed
over only the ground truth segmentation for "background". Lower is better for all columns.

Model Ball Bounce Two Obj Fall Two Obj Para Block/Obj Columns Raised Block Walls Two Ball

Autoregressive 0.2112 0.2168 0.2542 0.1943 0.1376 0.0978 0.2299 0.1440

Diffusion 0.2403 0.2221 0.2594 0.2103 0.1104 0.1223 0.2223 0.1709

Obj Tow. Obj Away Sphere Tow. Sphere Away Dominoes Ramp Table Avg.

Autoregressive 0.2226 0.1696 0.1218 0.1848 0.1616 0.1027 0.1715 0.1747

Diffusion 0.2534 0.2329 0.1325 0.2256 0.0998 0.2283 0.2586 0.1993

consistent while objects are in motion. All experiments were done on 1 H100 GPU. Generating a
single video took approximately 70 seconds for the autoregressive model and 399 seconds for the
diffusion model, resulting in 8 hours of total runtime for the autoregressive model and 47 hours for
the diffusion model. Results for both the autoregressive and diffusion based models are shown in
Table 1 (foreground mIoU) and Table 4. Since the diffusion model generates more frames than the
autoregressive one, we provide metrics for both the entire generated video and for only the first 33
frames (to match autoregressive). Overall, neither model performs well, with the highest average
mIoU being only 0.4508 for the diffusion model evaluated over 33 frames. In general, the diffusion
model consistently outperforms the autoregressive model, save for the Support Relation scenarios,
where the autoregressive model outperforms in 2 out of 3 scenarios. For RMSE, the autoregressive
model outperforms, but both models are close in quality.

4.2 Vision-Language Models

In order to evaluate the language-based subset of WorldBench, we test SOTA closed- and open-
source models: Qwen2.5 and Gemini. Qwen2.5 comes in 3 sizes, 7B, 32B, and 72B parameters,
and is designed to handle vision inputs natively. For Gemini, we test both Gemini 2.5 Flash and
Gemini 2.5 Pro. When running the evaluations, all models are provided with a system prompt which
describes the tasks, defines what the output format should be, and the format of the data provided (9
frames). The Qwen models are run on 1 H100 GPU with the use of vLLM, while the Gemini models
are evaluated through the provided API [23]. The total costs for evaluation were approximately $25.
The outputs of the models are evaluated by directly comparing against the answers. Results for all
the models are shown in Table. 5. Across all 4 scenarios, Gemini 2.5 Pro performs the best overall,
achieving 49.72% accuracy. Within the open source models, Qwen2.5 32B surprisingly outperforms
the larger 72B model, largely due to a very strong performance on the motion physics category.
However, overall, all five models perform relatively poorly on the benchmark, achieving results only
slightly better than chance. This suggests there is still much work to be done to improve the physical
understanding of modern VLMs.
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Table 3: Results of SOTA closed and open models on our language-based benchmark. Gemini
2.5 Pro, a closed model performs best overall, and Qwen2.5 32B performs best among open models.

Model Motion Phys Obj. Perm. Scale/Persp. Support Rel. Avg. ↑

Open
Models

Qwen2.5-VL-7B [4] 0.5161 0.2381 0.4474 0.5357 0.3737

Qwen2.5-VL-32B [4] 0.8710 0.2738 0.4737 0.5714 0.4641

Qwen2.5-VL-72B [4] 0.5806 0.3333 0.4211 0.5714 0.4309

GLM 4.1V 9B [22] 0.6674 0.3453 0.4473 0.6071 0.4641

Mistral Small 3.2 24B 0.4838 0.2500 0.3684 0.3571 0.3315

Llama-3.2-11B-Vision 0.5161 0.1548 0.3421 0.3571 0.2873

Closed
Models

Gemini 2.5 Flash [37] 0.6452 0.3571 0.6053 0.4643 0.4751

Gemini 2.5 Pro [37] 0.6774 0.4048 0.5000 0.5714 0.4972

Claude Sonnet 4 0.7096 0.4286 0.5526 0.4285 0.5027

GPT 4.1 0.3781 0.2619 0.5000 0.5000 0.3701

5 Discussion/Future Directions

Our empirical evaluation of current world foundation models and vision-language models shows
that despite their strong performance and varied abilities, they have significant shortcomings in their
ability to accurately model and predict physical interactions in dynamic environments.

For the Cosmos models — currently the only open-source WFMs — our quantitative and qualitative
evaluations showed that these models often lose consistency, turning objects into different shapes,
sizes, colors or even removing objects from the scene entirely. In addition, qualitative examples
such as those in Fig. 3 suggest that these models have strong priors from which they generate future
frames. For example, in the motion physics example, the model hallucinates a human arm that is
manipulating the objects, likely because that is similar to data that it has seen during the training
process. Similarly, for the support relation case, while these models can handle a ball rolling down a
ramp (likely a common inclusion in synthetic datasets) it does not handle the block at the bottom
of the ramp well. This suggests that is relying more on video priors in its training datasets than on
real physical properties. In addition, Fig. 5 show that for both autoregressive and diffusion models,
the performance is inversely correlated with the number of frames generated: as the model predicts
further in the future it is worse at doing so. The evaluations of SOTA VLMs highlights similar
challenges. The best performing model, Gemini 2.5 Pro, performs only slightly better than chance,
and all models struggle with the object permanence questions suggesting difficulty in predictable
object tracking and temporal consistency.

These limitations suggest that there is still much work to be done to improve the physical understand-
ing and consistency of both video and text generation models. Although WorldBench is as of now
only an evaluation set, we hope that future work will allow us to utilize our synthetic data generation
techniques to generate useful, high quality, and abundant synthetic data that can be used to train and
improve these models. In addition, physics-inspired losses and training strategies may help bridge
the current gaps and help improve the real-world performance of WFMs and VLMs.

In addition to limitations in the WFMs and VLMs, there are limitations in the current form of the
benchmark: because the data is synthetic, there is likely a distribution gap between the benchmark
and real-world scenarios. Additionally, the use of SAM2 to obtain masks from generated video is
not guaranteed to be accurate, as SAM2 can miss objects or include additional regions which would
affect the resulting mIoU. Future work could address these by collecting real data and relying on
human annotators for both ground truth and evaluating model predictions.

6 Conclusion
In this work, we introduce WorldBench, a new benchmark designed to evaluate the physics under-
standing and consistency of today’s world-foundation models" and vision-language models. Moving
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beyond binary or proxy tasks, our benchmark directly assess a model’s ability to predict a scene’s
evolution over time, offering new insights into these model’s physics understanding. Evaluating
Cosmos, Gemini and Qwen on WorldBench shows that today’s SOTA models still have significant
shortcomings that limit their ability to understand and process real-world physics. These challenges
highlight the need for new techniques that can instill physical understanding into models, and we
hope this benchmark can help guide that development.
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A Detailed Scene Descriptions

Here we provide a more detailed description of the scenes used in our benchmark:

Bouncing Ball A sphere, initially at rest at some known height above the ground, is subject to fall
freely under gravity. The provided video includes frames after the bounce, ensuring the model has
the necessary information for prediction. In this scenario, the initial height of the ball and material
(including bounciness) of the ball are randomized.

Two Object Fall Two distinct objects are initially at rest at different heights above the ground and
at a slight horizontal offset. Both objects are released to freely fall under gravity, and then typically
collide with each other and the ground. In this scenario, we randomize the shape and initial positions
of both objects.

Two Object Parabolic Motion This scenario is a slight variation of the above scenario, where two
distinct objects are placed on opposite sides of the scene. They are then projected towards each other
at some randomized initial angle and projectile angle, not necessarily in the same vertical plane. In
this scenario, the shapes, locations, and initial velocities of the objects are randomized to generate
diverse scenes.

Block & Obj An object is moving from left to right behind a wall. The movement is linear and
predictable, starting left of the wall with a randomized initial velocity. The object disappears behind
the wall and reemerges on the right side. In this scenario, the type of object along with its initial
velocity are randomized.

Columns An object moving from left to right behind several thin columns. This is very similar to
the Block & Obj task, except that the object periodically disappears and reappears as it passes each
column. The provided frames generally In this scenario, the type of object and initial velocity are
randomized.

Raised Block Bounce A sphere bouncing vertically behind a raised block. A sphere appears above
the block when approaching its highest vertical position, and below the block when close to the
ground, As it bounces, it is periodically occluded by the block and not visible to the camera. In this
scenario, the mass, restitution (bounciness), and material of the sphere were randomized.

Wall Bouncing A sphere rolling horizontally behind a block between two walls. As the sphere
rolls from one side to another, it eventually collides with a wall, bounces off, and rolls back the other
direction. The sphere is periodically occluded while behind the block, and reappears in a gap as it
approaches a wall. In this scenario, the mass, initial velocity, and friction coefficient of the sphere
were randomized.

Two Ball Bounce Two spheres bouncing vertically, with one larger sphere in front and one smaller
sphere straight behind it. During this motion, the small sphere is periodically occluded by the large
ball as their vertical positions diverge. In this scenario, the mass, restitution, and materials of both
spheres were randomized.

Dominoes This scenario features an object colliding with a series of standing dominoes on a
surface. Depending on initial velocity, the object knocks over varying number of dominoes, which
may subsequently topple onto one another. In this scenario, the type/shape of the object thrown and
initial velocity are randomized.

Ramp Block A sphere rolling down an incline until it encounters a fixed barrier at the end, causing
it to stop. This tests two things, one whether the incline supports the ball as it rolls, and then if the
block at the bottom supports and stops it. In this situation, the angle and length of the incline and the
initial position of the sphere are randomized.

Table Drop An object is positioned at a table’s edge with a portion extending beyond the surface.
This scenario directly challenges a model’s understanding of the minimum conditions required for
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stable support and balance. Mere contact with a support surface is insufficient–the object requires
adequate support distribution relative to its mass distribution. In this scenario, both the type/shape
of the object and its location relative to the table were randomized. This also meant that physical
parameters such as mass and restitution were in a sense randomized as they depended on the object
chosen.

Obj/Sphere Moving Towards Camera A single object (e.g. a sphere or miscellaneous irregular
object) is launched from the background and moves towards the camera. As the object approaches, it
should appear to increase in size due to perspective. In these scenarios, the type/shape of object and
the initial velocity are randomized.

Obj/Sphere Moving Away From Camera A single object (e.g. a sphere or miscellaneous irregular
object) is launched from the background and moves towards the camera. As the object moves away,
it should appear to decrease in size due to perspective. Similarly, in these scenarios, the type/shape of
object and the initial velocity are randomized.

B Additional Quantitative VLM Metrics

In this section, we expand upon the results in Tab. 3 of the main paper and show the results for each
model by scene category. Although all 5 models tested perform similarly in most categories, we notice
striking differences in the Walls category where the Qwen models are all near 0.0 while both Gemini
models achieve accuracys >0.6. All models have the most trouble with the Object Permanence scenes
and perform the best on Motion Physics scenes overall. This is somewhat expected as it is likely that
their training data included more examples of motion physics than of object permanence.

Table 4: Results on the VLM benchmark split up by scene type. Lower is better for all columns.

Model Ball Bounce Two Obj Fall Two Obj Para Block/Obj Columns Raised Block Walls Two Ball

Qwen2.5-VL-7B 0.8571 0.3333 0.4667 0.3846 0.5556 0.2857 0.000 0.8000

Qwen2.5-VL-32B 1.000 1.000 0.7333 0.5384 0.4444 0.7142 0.000 0.7000

Qwen2.5-VL-72B 0.8571 0.3333 0.6000 0.5384 0.6667 0.7142 0.1428 0.9000

Gemini 2.5 Flash 0.7142 0.5556 0.6667 0.4615 0.6667 0.7142 0.5714 0.9000

Gemini 2.5 Pro 0.7142 0.5556 0.7333 0.6153 0.6667 0.8571 0.8571 0.8000

Obj Tow. Obj Away Sphere Tow. Sphere Away Dominoes Ramp Table Avg.

Qwen2.5-VL-7B 0.5000 0.4444 0.3333 0.5000 0.7000 0.5000 0.4167 0.3737

Qwen2.5-VL-32B 0.6000 0.4444 0.4444 0.4000 0.8000 0.5000 0.4167 0.5714

Qwen2.5-VL-72B 0.6000 0.4444 0.3333 0.3000 0.8000 0.6667 0.3333 0.4309

Gemini 2.5 Flash 0.5000 0.5556 0.8889 0.5000 0.6000 0.5000 0.3333 0.4751

Gemini 2.5 Pro 0.8000 0.3333 0.5556 0.3000 0.7000 0.6667 0.4167 0.4972
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We also summarized the performance of each model on multiple choice and True/False questions.
Among the models, GLM 4.1V 9B performs the best in Multiple choice questions and Claude Sonnet
4 performs best on True/False questions.

Table 5: Results of SOTA models on our multiple-choice and truth/false benchmark.

Model Multiple Choice True/False

Qwen2.5-VL-7B 0.35 0.4262

Qwen2.5-VL-32B 0.45 0.4918

Qwen2.5-VL-72B 0.4 0.4918

GLM 4.1V 9B 0.4333 0.5345

Mistral Small 3.2 24B 0.2833 0.42622

Gemini 2.5 Flash 0.4166 0.5902

Gemini 2.5 Pro 0.4166 0.6557

Claude Sonnet 4 0.4083 0.6885

GPT 4.1 0.3333 0.4426
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